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Summary of the algorithm. The objective of the contract is to develop a radiative transfer based synergistic 
algorithm for estimation of global leaf area index (LAI) and fraction of photosynthetically active radiation absorbed 
by vegetation (FPAR). The algorithm consists of a main procedure that exploits the spectral information content of 
MODIS measurements and the angular information content of MISR measurements to derive accurate estimation of 
LAI and FPAR. Should this main algorithm fail, a backup algorithm is triggered to estimate LAI and FPAR using 
vegetation indices. Both algorithms are capable of executing in MODIS-only or MISR-only mode, should cloud 
contamination, data frequency and spatial or temporal resolution requirements hinder a joint MODIS/MISR mode of 
operation. The MODIS-only mode of the algorithm requires a land cover classification that is compatible with the 
radiative transfer model used in the derivation. Such a classification is currently a part of MODIS landcover product 
and utilized in collection 4 MODIS LAI and FPAR algorithm. Therefore, our algorithm has interfaces with the 
MODIS/MISR surface reflectance product and the MODIS Land Cover Product. Validation of the LAI/FPAR 
product is an important part of algorithm development. We developed scaling-based validation strategy of the LAI 
and FPAR product and implementing it currently in our validation activity. Successful validation will be 
accomplished if timely and accurate product uncertainty information becomes routinely available to the product 
users within two years after Terra’s launch.  
 
 
Summary of work performed during the first half of 2003 (January through June): 
 
• Assessment of the performance of the MODIS LAI algorithm as a function of input data 

uncertainties – case study for grasses; 
• Analysis of the performance of the MODIS LAI and FPAR algorithm over broadleaf forests; 
• Maintenance of the algorithm: a) patch delivery for the TERRA LAI and FPAR algorithms to 

fix problem of incorrectly reading negative View Azimuth Angles, b) patch delivery for the 
TERRA LAI and FPAR algorithms to fix problem of assigning a fill value (instead of 
LAI=0) to pixels located at the Northern high latitudes during winter time, c) report to the 
MODIS landcover team about errors in latest version (collection 3) of the 6-biome land cover 
product (MOD12Q1), input to the collection 4 MODIS AQUA and TERRA LAI & FPAR 
algorithms, d) patch delivery for AQUA LAI & FRAR algorithm to update AQUA LUT with 
the results of collection 4 science test for TERRA LAI and FPAR product; 

• Development of the strategy for the future work and submission of the proposal in response 
to the NASA Research Announcement (NRA-03-OES-02), “Global Products of Leaf Area 
Index and Fraction Vegetation Absorbed PAR from the MODIS Sensors Onboard TERRA 
and AQUA: EOS Algorithm Refinement Proposal”; 

• Talk at the Canadian Center for Remote Sensing, “Analysis of the performance of the 
MODIS LAI and FPAR Algorithm“, Ottawa, Ontario, Canada, May 26, 2003.  



2 

I. Assessment of the Performance of the MODIS LAI Algorithm as a Function of Input 
Data Uncertainties – Case Study for Grasses 
 
Statement of the Problem 

 
During validation of the collection 3 MODIS LAI and FPAR product it was found that MODIS 
LAI substantially overestimates filed measured LAI. Field measurements of LAI collected over a 
5 km by 5 km spatial area indicates mean LAI < 4. However MODIS LAI product averaged over 
the same area suggest LAI ~6. Research described below is aimed to resolve this inconsistency. 
 
Data Used 
 

• MOD15A2, 8-day LAI composite, collection 3, tile h10v05, composite 2001.185 
• MODAGAGG, daily surface reflectance, collection 3, tile h10v05, days 185-192 
• MOD12Q1, 6-biome classification map, at launch version, tile h10v05 

 
Site Description 
 
The MODIS LAI & FPAR product from the tile h10v05 was selected for this investigation. This 
tile contains the Konza Prairie Biological Station, Manhattan, KS, USA (located 39.0823o North 
and 96.56025o West; MODIS tile h10v05, line 110, sample 604). This site was selected for 
several recent major field campaigns within several projects: BigFoot (WWW 1), Flux Network 
(FLUXNET, WWW 2), Global Landcover Test Site Initiative (GLCTS, WWW 3), Long-Term 
Ecological Research (LTER, WWW 4). It is also an EOS core validation site (Privette et al., 
1998; WWW 5), selected to provide a focus for satellite, aircraft, and ground data collection of 
land product validation. This site measures a number of ecological variables (leaf area index, 
biomass and NPP) besides carbon/water and energy fluxes, therefore provide a good opportunity 
to test MODIS LAI and FPAR products. MODIS data are being extracted regularly over these 
sites. We focus on analysis of the MODIS Collection 3 LAI product over the Konza site.  
 
Impact of Biome Misclassification on LAI Retrievals 
 
The assumption that vegetation within each pixel belongs to one of the six biomes impacts the 
MODIS LAI/FPAR retrievals. With misclassification, either main algorithm fails or it produces 
an incorrect LAI value (Tian et al., 2000; Myneni et al., 2002). Therefore we start our research 
with the analysis of the at-launch static LAI & FPAR Biome map used by the collection 3 LAI & 
FPAR algorithm.  
 
Figure 1.1 shows distributions of biomes within the entire tile (1200km by 1200km) and areas of 
100km by 100km and 20km by 20 km centered around the Konza validation site. According to 
the MODIS at-launch LAI & FPAR land cover map, biome 1 (Grasses and Cereal Crops) 
occupies 24% of the 5km by 5km area while the field measured value is 64% (Cohen et al., 
2002). Therefore, more than (64%-24%)/0.64=62.6% of biome 1 pixels are misclassified, leading 
to the overestimation of the mean LAI value over the 5km by 5km (Figure 1.2a).  
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(a) (b) (c) 

 

 
         

Figure 1.1: Spatial distribution of biomes over 1200km by 1200km (panel a), 100km by 100km 
(panel b), and 20km by 20 km (panel c) areas around the Konza validation site, as estimated by 
the at launch biome map. A 5km by 5km area where field measurements were performed is 
shown as a square in panel (c). According to this map, biome 1 (Grasses and Cereal Crops) 
occupies 24% of the 5km by 5km area while the field measured value is 64% (Cohen et al., 
2002). The at launch biome map identifies biome 3 (Broadleaf Crops) as the most probable 
biome type within the 5km by 5km area while filed measurements show that only 0.3% of this 
area are occupied by Broadleaf Crops.  
 
Does this example indicate that the global MODIS LAI field is incorrect? 
 
The Collection 3 MOD15 LAI/FPAR algorithm uses the 1 km Surface Reflectance Product, 1 
km at launch Land Cover Map to produce LAI and FPAR fields at 1 km resolution. Three 
random variables impact the retrievals. They are (a) uncertainties in surface reflectance product 
(e.g., due to correction for atmosphere and other environmental effects); (b) uncertainties in 
landcover identification (e.g., due to biome mixture within 1 km pixel), and (c) uncertainties in 
georegistration. The predicted LAI value in one pixel, therefore, should be treated as an 
observation of a random variable and thus an averaging over an extended homogeneous area is 
required to reduce variations due to uncertainties. 
 
The size of an area is determined by the quality of algorithm input. This area should contain 
sufficient number of pixels with "good quality input." In the above example, 62.6% of biome 1 
pixels located within the 5km by 5km area are attributed to incorrect biome types and thus this 
area cannot be taken as an area to examine variation in LAI values because the uncertainty in the 
biome map is too high. Figure 1.2a, therefore, is not indicative of the quality of the global 
product.  
 
Grasses are majority biome in a larger, 100km by 100km area, making up 53% of the vegetated 
surface (Figures 2a and 3). Biome 1 pixels constitute several sufficient large homogeneous 
patches reducing uncertainties in the distribution of biomes. Figure 1.2b shows mean LAIs taken 
over biome 1 pixels in the entire tile and their standard deviations. One can see that, with a very 
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high probability, values of mean LAI do not exceed 4. Mean LAI derived from field 
measurements was 3.5 
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Figure 1.2: Temporal variation in mean LAI and standard deviation over a 5x5 grid centered 
around the tower (Panel a) and the entire tile (Panel b). The MODIS LAI product shows 
seasonality, as expected. However, mean LAI over the 5x5 grid are substantially overestimated: 
the MODIS algorithm predicts LAI ≈ 6 while field measurements showed LAI ≤ 4 for the same 
period. Mean LAI over the entire tile is about 4 which is close to that derived from the KONZA 
field campaign, July 11-17, 1999.  
 
Impact of Uncertainties in Surface Reflectance on LAI Retrievals 
 
In the MODIS LAI and FPAR algorithm, uncertainties in input surface reflectances set a limit to 
the quality of LAI retrievals. Generally, accuracy of the LAI and FPAR retrievals cannot be 
better than the overall accuracy in the input data. However, if the uncertainty information is 
properly used in the algorithm, the retrievals can be improved. In this study, provide an estimate 
of uncertainties in surface reflectance data and investigate their impact on the retrieval quality.  
 
The analysis was performed with 8 days (July 4 through July 11, 2001) of the Collection 3 
MODAGAGG surface reflectances at RED and NIR spectral channels for the tile h10v05. The 
following terminology is used in our study. “Valid pixel” is a pixel with Band_QC quality 
control at RED and NIR channels set to ”Product produced at ideal quality” or “Product 
produced, less than ideal quality”. Otherwise the pixel is called “invalid pixel”. We separate two 
classes of surface reflectances. The first one termed “good quality surface reflectance” consists 
of biome 1 valid pixels for which at least 4 observations during 8 day period were available. The 
vegetation structure remains unchanged during the 8 day period and thus one should expect 
relative low variation in surface reflectances for this class. Invalid pixels for which 4 
observations were available are attributed to the second class called “poor quality data.” Figure 
1.4 shows histograms of relative variation in surface reflectances at RED and NIR spectral 
bands. Generally, variation in “good quality” data is 13% in RED band, 11% in NIR band. 
However, “poor quality data” exhibit high variations, about 70% and 13% for Red NIR bands, 
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respectively. One can conclude that Surface Reflectance Band QA convey correct information 
about quality of surface reflectance data.  
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Figure 1.4: Histograms of the coefficient of variation of surface reflectances at RED and NIR 
spectral bands for “Good” (Panel a) “Poor” (Panel b) quality data. Note that a part of “poor” 
quality data exhibit low variation. This may indicate reliable data labeled as “poor quality”.  
 
To identify factors that cause high variation in “poor quality” data, we decompose variation in 
the surface reflectance SRδ  as  
 

BA viewSR +×= δδ , 
 
Here viewA δ×  is the variation in SR due to variations in view angle, and term B explains 
variation in SR due to other factors. Constants A and B can be determined from regression 
statistics, as shown in Figure 1.5. Their values were A=0.3 and B=0.46. When variation in view 
angles viewδ  is close to 0, the variation in surface reflectance is about 46%. This suggests that 
variation in “poor quality” data are not caused by variation in the view angle.  
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Figure 1.5: Regression line: δSR versus δview for “Poor Quality” . 
 
The next step is to evaluate an impact of different input quality on LAI and FPAR retrievals. We 
used “valid data” and “invalid data” separately, as the input to the MODIS LAI/FPAR algorithm. 
The Retrieval Index (RI) defined as the ratio of pixels for which the main algorithm retrieved 
LAI and FPAR to the total number of processed pixels. The RI for “valid” and “invalid” data 
were 40% and 27%, respectively. This suggests that “valid data” is more likely to be retrieved by 
the main algorithm than “invalid data”. But there is no strong correlation between “valid data” 
and the RI (Figure 1.6).  
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Figure 1.6: Daily variations of the Retrieval Index for “valid data” and “invalid data” 
 
These results suggest that MODAGGAG QA itself is not sufficient to assure the successful 
execution of the LAI and FPAR algorithm. What are key factors that influence algorithm 
execution or failure? To address this question, surface reflectances are subdivided into the 
following subsets: 
 

• GL (good quality, low uncertainties) – “good quality” data with relative uncertainties in 
surface reflectance less than 13%.  
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• GH (good quality, high uncertainties) - “good quality” data with relative uncertainties 
higher than 13%.  

• PL (poor quality, low uncertainties) - “poor quality” data with relative uncertainties less 
than 13%. 

• PH (poor quality, high uncertainties) - “poor quality” data for with relative uncertainties 
higher than 13%.  

 
The RI for GL, GH, PL and PH data are 65%, 44%, 64% and 22%, respectively. The differences 
between RIs for each class of input data can be explained by comparing the distribution of 
observed surface reflectances with values from LUT (retrieval domain). The RI is expected to be 
high for pixels belonging to observed and simulated surface reflectances. Table 1.1 illustrates 
this rule: about 65% of the GL and PL pixels are located within or near the retrieval domain, but 
the overlap of GH and PH data with retrieval domain is less than 30%. This explains why GL 
and PL data result in higher values of the RI than GH and PH data. The QA in MODAGGAG 
product alone does not provide enough information on input quality and thus it can not assure the 
successful execution of the main algorithm. A temporal analysis is required to discriminate 
between good and poor data quality. However, there are still 45% of GL data that is not included 
in the retrieval domain. The future version of algorithm should extend the retrieval domain to 
increase the RI. Figure 1.7 illustrate the relationship between RI and SRδ : RI drops from 68% to 
43% when SRδ  increases. 
 
 

Collection 3 Good quality, 
low uncertainties 

Good quality, 
high uncertainties 

Poor quality, low 
uncertainties 

Poor quality, high 
uncertainties  

∩ ∪ ∩ ∪ ∩ ∪ ∩ ∪ ∩ ∪ 
Collection 3 

 2216 2216 755 3585 485 3157 247 2641 703 7555 

Good quality, low 
uncertainties 755 3585 2214 2214 1216 2470 704 2274 1856 6490 

Good quality, high 
uncertainties 485 3157 1216 2470 1516 1516 529 1749 1186 6462 

Poor quality, low 
uncertainties 247 2641 704 2274 529 1749 762 762 754 6140 

Poor quality, high 
uncertainties 703 7555 1856 6490 1186 6462 754 6140 6122 6122 

 
Table 1.1. Comparison of four groups of data with the collection 3 retrieval domain. 
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Figure 1.7: Retrieval index as a function of the uncertainties of surface reflectance 
 
How do uncertainties in surface reflectances impact LAI retrievals? Figure 1.8a illustrates that if 
“good quality” data are used, the uncertainties in retrieved LAIs are about 10%. For poor quality 
data its value is 30%. Figure 1.8b shows the relationship between uncertainties in input and in 
retrievals. If uncertainties in input surface reflectance data do not exceed 20%, LAIδ  is nearly 
constant. Above this threshold LAIδ  increases linearly with a slope of 1.3.  
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Figure 1.8: Impact of variation in surface reflectance on LAI retrievals. Panel (a) shows 
histograms of the coefficient of variation of LAI derived using “good quality” and “poor quality” 
data. Panel (b) shows variation in LAI as function of variation of surface reflectances 
 
Conclusions 
 
The overestimation of the MODIS LAI over Konza site is caused by two factors, namely, 
uncertainties in biome map and surface reflectances. The uncertainty in the MODIS LAI product 
can be estimated as function of biome misclassification biomeδ  and uncertainties in surface 
reflectances SRδ  as follows: 
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CBA SRbiomeLAI +−×+×= %)15(δδδ , if %15>=SRδ , 
CA biomeLAI +×= δδ  , if %15<=SRδ . 

 
Here A is the coefficient that indicates the effect of biome misclassification, B is the coefficient 
describing the impact of uncertainties in surface reflectances, and C is a constant that represents 
the uncertainties in canopy radiation model used in the MODIS LAI & FPAR algorithm. It was 
found that A is about 0.4, B ≈ 1.2, and C = 0.2. This indicates that uncertainties in LAI retrievals 
are limited by uncertainties in input and not uncertainties in the LAI & FPAR algorithm. To 
minimize the biome misclassification and uncertainties in surface reflectance, the validation of 
global LAI/FPAR product should be performed at a sufficiently large scale.  
 
II. Analysis of the Performance of the MODIS LAI and FPAR Algorithm over Broadleaf 
Forests 
 
Site Description 
 
The MODIS LAI & FPAR product from the tile h12v04 was selected for this investigation. This 
tile contains the Harvard Forest, Petersham, MA, USA (located 42.5382o North and 72.1714o 
West; MODIS tile h12v04, line 895, sample 818). The site has a transition land cover dominated 
by mixed hardwood and conifer forests, ponds, extensive spruce and maple swamps. Harvard 
Forest is well known for its long history of scientific research of monitoring natural disturbances, 
environmental change and human impacts (WWW 6). This site was selected for several recent 
major field campaigns within following projects: BigFoot (WWW 1), Flux Network 
(FLUXNET, WWW 2), Global Landcover Test Site Initiative (GLCTS, WWW 3), Long-Term 
Ecological Research (LTER, WWW 4). It is also an EOS core validation site, selected to provide 
a focus for satellite, aircraft, and ground data collection of land product validation (WWW 5). 
 
Data Used 
 

• MOD15A2, 8-day LAI composite (collection 4), tile h12v04, composite 2001.001-
2001.313; 

• MODAGAGG, daily surface reflectance (collection 4), tile h12v04, days 2001.121-128 
and 2001.193-200 

• MOD12Q1, 6-biome classification map, collection 3, tile h12v04 
 
Statement of the Problem 
 
The evaluation of the LAI and FPAR product, collection 4, was performed for broadleaf forest.  
at MODIS tile h12v04. The tile h12v04 contains the Harvard Forest validation site, where 
extensive measurements of LAI were performed recently by BigFoot and BU teams. Field 
measurements indicate that mean LAI is about 5.0 ± 0.85 during the summer time, while MODIS 
estimation is about 5.8 ± 0.9. The discrepancy is less than 20% and is allowable by specifications 
of product. However, as can be seen from Figure 2.1, LAI retrievals are mainly performed by the 
back-up algorithm, i.e., the main algorithm failed during that period. From the other side, the 
main algorithm retrieves LAI without failure during spring green-up. Analysis of factors that 
determine such a behavior is the main objective of the research below. 
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Figure 2.1: Temporal variation of the collection 4 MODIS LAI from early spring to summer for 
broadleaf forest in the tile h12v04. Panel (a): the 6 biome land cover map used by the collection 
4 algorithm. Panel (b): LAI for May 01-08, 2001. Panel (c): LAI for July 12-19, 2001. Panel (d): 
QC for May 01-08, 2001. Panel (e): QC for July 12-19, 2001.  
 
Seasonal Variations in MODIS LAI over Broadleaf Forests 
 
MODIS LAI and FPAR product correctly captures seasonal variations in biome 5 (Broadleaf 
Forests) LAI. Figure 2.2a shows mean LAI and its standard deviation from MODIS collection 4 
data for broadleaf forest over whole tile h12v04. During winter time and early spring (days 0-
100, which is January 1 - April 10) LAI is stable and equals approximately 0.5. After short time 
of green-up (days 100-150, which is April 10- May 30) LAI increases up to its maximum value 
of about 5.8 ± 0.9. During summer (days 150-250, which is May 30 - September 07) LAI has 
stable value of 5.8 ± 0.9. After day 250 LAI is dropping down to its winter value of 0.1. 
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In addition to seasonal variation in LAI values, let us consider the quality of retrievals. A 
key indicator of the retrieval quality is the algorithm path. Three options of the execution exist 
and are listed in the order of decreasing quality: main algorithm without saturation, main 
algorithm with saturation and back-up algorithm. Figure 2.2(b) shows seasonal variations in the 
number of pixels generated by each of the execution branch. During the spring time green-up, 
the portion of pixels where LAI is produced by the main algorithm increases up to its maximum 
value at composite 121 (May 01-08, 2001, LAI=2.9 ± 1.5) and then drops to the minimum at 
approximately day 153 (May 30, 2001, LAI=5.8 ± 0.9). Then, during whole summer time main 
algorithm fails for majority of the pixels, and LAI values are generated by the back-up algorithm.  
 

(a) (b) 

 
 
Figure 2.2. Annual variations in the collection 4 MODIS LAI retrievals over broadleaf forests 
for the tile h12v04. Panel (a): Mean LAI and its standard deviation. Panel (b): Number of pixels 
where main algorithm without saturation was executed (red), main algorithm with saturation was 
executed (green) and the back-up algorithm was executed (yellow). The gap in the data (days 
168-185) is due to the MODIS instrument being down for that time. 
 
Interpretation of MODIS Surface Reflectances with RT Approach 
 
Scatter plot of the daily MODIS surface reflectances (July 19, 2001, MODAGAGG product) for 
broadleaf forests in the tile h12v04 is shown at Figure 2.3. Surface reflectances, processed by 
different branches of the algorithm are color coded for convenience of identification. Note the 
shape of retrieval domain for each execution branch, which presents finger print of the LUT. The 
main algorithm without saturation retrieves LAI for lower portion of surface reflecetances. Main 
algorithm with saturation was executed for pixels where NIR reflectances are higher compared to 
the previous case. The back-up algorithm is executed when NIR is high and RED is small (small 
NDVI) as well as for bright patterns in both RED and NIR channels. The radiative transfer 
equation is used to interpret the retrieval domain of the main algorithm (for cases with and 
without saturation).  
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(a) (b) 

 
Figure 2.3. Panel (a): MODIS surface reflectances selected by different branches of the 
execution of the LAI and FPAR algorithm. Daily data for July 19, 2001 for broadleaf forest in 
tile h12v04 were used. Contours show the location of highest density data. Panel (b) shows 
variation in surface reflectances as a function of LAI and soil patterns. As LAI is increasing 
surface reflectances converge to a common point. This is a condition of saturation. 
 
RT simulation performed with recently developed radiation model that characterizes radiative 
transfer in heterogeneous vegetated surfaces using stochastic concepts (Shabanov et al., 2000). 
To obtain a general picture of changes in the spectral space when the system (vegetation + 
background) is changing, it is sufficient to consider horizontally homogeneous canopy. For this 
purpose, leaf optical properties were assumed to be invariant and set as follows (based on 
average data from a spectral data bank): for grasses, 070.0reflred = , 49.0reflnir = ; 

redtrans =0.030 43.0trans nir = ; for needle forests, 055.0reflred = , 498.0reflnir = ; redtrans = 
0.040, nirtrans = 0.386. In model calculations I used averaged optical properties of two species 
due to negligible effect of difference between them on model output. The initial state of the 
system is a bare background and is specified by background reflectance. The controlling 
parameter of the system is leaf area index (LAI). As LAI is increases against an invariant 
background, the system moves along trajectories (soil or background isolines) in the spectral 
space away from the initial state. To observe different trajectories, the initial conditions 
(background reflectances) according to the background line concept (Baret et al., 1993): 

background
nirρ = ( )04.02.1 background

red +ρ⋅ , where background
redρ  and background

nirρ  are background reflectances 
at red and near-infrared wavelength were varied. The set of calculated trajectories (soil isolines) 
is shown in Figure. 2.3b, which also shows LAI isolines, along which LAI is constant, while the 
background reflectance changes (LAI change between adjacent LAI isolines is 0.25). Note that 
for very dark backgrounds, increasing leaf area increases both red and near-infrared reflectances, 
while for backgrounds of intermediate brightness, red reflectance decreases and near-infrared 
reflectance increases. In the case of dense canopies the trajectories converge to a common point 
in the spectral space, the reflectance when leaf area tends to infinity. The location of this point is 
determined mostly by leaf optical properties and also by canopy structural features (leaf normal 
orientation distribution, geometry, etc.) For example, the location of this limiting point 
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(hemispherical reflectances of canopy, ( )λcanopyR ) can be analytically evaluated using a two-
stream approximation (Ross, 1981) for the case of a horizontally homogeneous canopy with flat 
horizontal leaves, 

( ) ( ) ( )( ) ( )
( )λρ

λρ−λτ−−λτ−
→λ

∞→

22
canopy

LAI

11
Rlim , 

 
where ( )λρ , ( )λτ  are leaf hemispherical reflectance and transmittance at wavelength λ .  
 
Now, if we compare Figures 2.3a and 2.3b we can see that MODIS surface reflectances 
qualitatively follow to the patterns predicted by RT approach. Figure 2.3a also shows location of 
the highest density of the data in spectral space, depicted as contour plot. This contour plot only 
includes the best quality surface reflectances as indicated by MODAGAGG data quality control 
(Band_QC=”Product produced at ideal quality”). Due to the fact that LAI is high for the majority 
of the pixels during the summer time at broadleaf forests (LAI = 5.8 ± 0.9, cf. Figure 2.2) 
location of the highest density data should match with the limiting point at Figure 2.3b, which 
indicates retrievals under condition of saturation. 

 
Comparison of MODIS LAI for Spring and Summer 

 
To understand the reason for the failure of the main LAI algorithm in the case of broadleaf 
forests, let us compare its performance for the spring time, when it works for majority of the 
pixels. Figure 2.4 shows scatter plot of surface reflectances during May-01-08, 2001 and July 12-
19, 2001, which were selected by LAI and FPAR algorithm to generate 8-days composite LAI 
and FPAR product. The corresponding scatter plots are overplotted with contour plots of highest 
data density. It follows from the comparison of Figure 2.4a and 2.4b, the reason for the main 
algorithm failure during summer is mismatch between domain of definition (LUTs) of the main 
algorithm and location in the spectral space of the highest density of surface reflectances. The 
algorithm is using static LUTs- the finger prints of the main algorithm LUTs for the case of main 
algorithm without and with saturation are exactly the same for spring and summer data. 
However, because of green-up, location of highest density of the surface reflectance data moved 
to the higher NIR (increase of 71%) and lower RED (decrease of 27.5%) location as indicated in 
Figure 2.4c and Table 2.1. Change of the most probable RED and NIR is accompanied with the 
increase of NDVI by 29.1%. Due to the fact that mean NDVI is high during the summer 
(NDVI=0.835) and main algorithm fails, LAI is calculated from LAI-NDVI regression curves, 
which also were established for lower saturation NDVI (flat part of the curve at the Figure 2.4d). 
Essentially the majority of LAI values are retrieved from the portion of NDVI-LAI curve where 
if NDVI is higher 8.5 then LAI=6. 
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 (a) (b) 

 
 

(c) (d) 

 
 
Figure 2.4. Panel (a) shows surface reflectances for May 01-8, 2001. Panel (b) shows surface 
reflectances for July 12-19, 2001. Panel (c) shows change of surface reflectances between the 
above dates. Panels (d) shows LAI-NDVI relationship established by main and back-up 
algorithms for July 12-19, 2001.  
 
 

Variable May 
01-08, 2001

July 
12-19, 2001 Change 

Red 0.047 0.034 -27.5% 

NIR 0.226 0.387 +71.2% 

NDVI 0.646 0.835 +29.1% 

LAI 2.97 5.59 +88.2% 
 
Table 2.1: Change in surface reflectance properties for broadleaf forest at tile h12v04 during 
transition from spring (May 01-08, 2001) to summer (June 12-19, 2001) 
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Analysis of the Compositing Scheme  
 
MODIS LAI and FPAR product (MOD15A2) is 8-day composite of daily LAI and FPAR 
product. In collection 4 compositing is performed using maximum FPAR over best quality 
retrievals (best is main algorithm without saturation, then main algorithm with saturation and the 
lowest level is back-up algorithm). This compositing scheme is improvement over the previously 
used (for collection 3 and earlier version), where maximum FPAR was done over all the daily 
retrievals regardless of the quality of retrievals. New compositing allows decreasing the amount 
of pixels in MOD15A2 product with LAI generated by back-up algorithm, due to the fact that 
preference in compositing is given to the best quality data, which is main algorithm without 
saturation. Comparing Figure 2.3a (daily data for July 19, 2001) and Figure 2.4d (8 day 
composite for dates July 12-19, 2001) one can note that compositing decrease amount of pixels 
with high RED and NIR reflectances located at soil line and compress data to the neighborhood 
of the domain of definition of the main algorithm. From other side, the effect of performing 
maximum FPAR compositing is also clear- pixels with high NDVI (and correspondingly high 
FPAR) beyond of the domain of definition of the main algorithm (high NIR and low RED) are 
inherited from daily to 8-days composite.  

 
(a) (b) 

  
 
Figure 2.5: Variability of LAI during 8-days compositing period. Panel (a) shows histograms of 
the minimum (solid line), maximum (dashed and dotted line) and composited (dashed) LAIs for 
the main algorithm retrievals. Panel (b) shows the same but for back-up algorithm 
 
Now, let us consider variability of daily LAI during 8-days compositing period, as shown at 
Figure 2.5. This figure shows histograms of minimum and maximum LAI during 8-days period 
as well as histogram of compositing LAI. There are virtually no variations between those three 
values for the main algorithm case. On average, only 1.1 out of 8 days for particular pixels has 
LAI generated by main algorithm. However, for the case of back-up algorithm, on average 7.9 
days out 8 for particular pixels have LAI generated by back-up algorithm, and boundary of 
variations between minimum and maximum are large (from LAI=0.5 to LAI=6). Due to the 
maximum FPAR composting, always the highest LAI value is selected. This variability of LAI 
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retrievals generated by back-up algorithm should serve as indicator of uncertainties in surface 
reflectances as well as indicator of limitation of back-up algorithm on high quality retrievals.    
 
Summary 
 
This is an ongoing research with the goal of specifying how the parameterization of the 
algorithm should be improved to advance quality of the LAI and FPAR product. Key findings to 
the present time can be summarized as follows:  

• During summertime period for broadleaf forest current LAI/FPAR algorithm does not 
sample in full most probable location in RED-NIR spectral space of surface relectances. 
NDVI evaluated from MODIS surface reflectances is higher than what is set currently in 
LUTs. 

• Analysis of compositing scheme indicates small variations in LAI retrieved by the main 
algorithm versus large variation in LAI retrieved by back-Up algorithm. 

The expected changes in the algorithm will possibly include, but will not be limited to: 
• Performing tuning of LUTs: leaf albedo, including more soil patterns; 
• Modification to compositing scheme for Back-Up algorithm: selection of best quality 

input surface reflectances followed by average of LAI (not maximum FPAR). 
In addition, research will be performed to access quality of surface reflectance data. The main 
question is if mean value of surface reflectances (especially at NIR channel) match to the ones 
predicted by RT theory for vegetation canopies. 
 
III. Maintenance of the Algorithm Issues  
 
• Patch delivery for the TERRA LAI and FPAR algorithm to fix problem of incorrectly 

reading negative view azimuth angles.  
• Patch delivery for the TERRA LAI and FPAR algorithm to fix problem of assigning fill 

value (instead of LAI=0) to pixels located at Northern high latitudes during winter time.  
• Report to the MODIS landcover team about errors in latest version of MOD12Q1, 6-biome 

land cover product, input to MODIS AQUA and TERRA LAI/FPAR algorithm.  
• Patch delivery for AQUA LAI and FRAR algorithms to update the AQUA LUT with the 

results of collection 4 science test for TERRA LAI and FPAR product. 
 
IV. Future Work Plans 
 
Current contract for development MODIS LAI and FPAR product will expire by the end of year 
2003. Our team analyzed results of the research during past years and developed strategy for the 
future work. We submitted a proposal for NASA Research Announcement, titled “Global 
Products of Leaf Area Index and Fraction Vegetation Absorbed PAR from the MODIS Sensors 
Onboard TERRA and AQUA: EOS Algorithm Refinement Proposal’. Below we summarize key 
points of the proposal. 
 
Algorithm Refinement  

• Evaluation of input surface reflectance uncertainties for use by the algorithm to produce 
LAI and FPAR fields of highest possible quality; 
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• Improvements to algorithm physics to account for mixture of biome architectural types 
with in a pixel; 

• Inclusion of green and blue band surface reflectances to facilitate retrievals when red and 
near-infrared band reflectances saturate in dense vegetation. 

• Research on improvements to compositing schemes. 
• Research on improvements to the back-up algorithm 
• Analysis of LAI & FPAR products from Terra MODIS and Aqua MODIS 

 
Product Analysis 

• Analysis of products for spatial coverage. 
• Analysis of products for accuracy 
• Analysis of products for quality 

 
QA Improvements and Operational QA of LAI & FPAR Products 

• Updating QA definitions 
• Inclusion of biome classification confidence level in LAI & FPAR QA 
• Operational QA of the Product 

 
Stage 2 Validation 

• Achieve Stage-2 Validation for the MODIS LAI & FPAR products.  
• Conduct field campaigns in collaboration with the VALERI project to facilitate 

assessment of product uncertainties over a widely distributed set of locations and time 
periods.  

• Validation with data from the field campaigns and fine resolution satellite data. 
 
Higher Resolution Products for Key FLUXNET, LBA and NACP Sites 

• Generation of 250 m daily LAI & FPAR products for 50 by 50 km regions around key 
(core) FLUXNET, LBA and NACP sites (about 25) for 1 test year at the PI computing 
facility. The sites will be selected in consultation with researchers involved in these 
programs (the test year can be different for the three programs). 

• Modifications to algorithm  
• Generation of 250 m Look-Up-Tables (LUTs) 
• Relations between vegetation indices and LAI & FPAR at 250 m resolution 
• 250 m product generation 

 
Comparative Investigations 

• Assess the consistency between LAI & FPAR and related MODIS land products. 
• Assess the consistency between LAI & FPAR products from different sensors. 

 
Scientific Use of LAI & FPAR Products 

• Global Vegetation Dynamics 
• Terrestrial Carbon Cycle 
• Climate Variability 
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